Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Salud colect ; 10(3): 325-337, sep.-dic. 2014. tab
Article in Spanish | LILACS | ID: lil-733293

ABSTRACT

En el marco de la creciente feminización de la profesión médica en México, el artículo indaga sobre las características de este proceso para el caso de la ginecobstetricia. Considerando la feminización como un proceso de cambio, que se analiza cuantitativa y cualitativamente, el artículo se detiene en especial en las experiencias de las mujeres ginecobstetras, experiencias que se dan en el seno de una especialidad que, desde sus orígenes, funcionó como un dispositivo de control del cuerpo de las mujeres. Basado en una investigación etnográfica, el artículo combina fuentes estadísticas, de archivo y de observación de campo. El material que surge de las entrevistas muestra las experiencias y tensiones que viven las ginecobstetras en este contexto.


In the framework of an increasing feminization of the medical profession in Mexico, this article explores the characteristics of this process in the obstetrics and gynecology specialty. Understanding feminization as a process of change to be analyzed both quantitatively and qualitatively, the article focuses special attention on the experiences of female obstetrician-gynecologists within a medical specialty that has since its origins functioned as a mechanism of control over women's bodies. Based on ethnographic research, the article combines statistical and archival sources and field observation. The interviews reveal the experiences and tensions women obstetrician-gynecologists encounter in this context.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Arginine/chemistry , Pseudomonas putida/enzymology , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/isolation & purification , Binding, Competitive/genetics , Catalysis , Enzyme Activation/genetics , Flavin Mononucleotide/metabolism , Kinetics , Ligands , Mandelic Acids/metabolism , Mutagenesis, Site-Directed , Phenylacetates/metabolism , Protein Binding/genetics , Pseudomonas putida/genetics , Substrate Specificity/genetics , Sulfites/metabolism
2.
Experimental & Molecular Medicine ; : 132-142, 2010.
Article in English | WPRIM | ID: wpr-81941

ABSTRACT

Sex-determining region Y box 18 (Sox18/SOX18) gene is an important regulator of vascular development playing a role in endothelial cell specification or differentiation, angiogenesis and atherogenesis. The aim of this study was to perform comprehensive functional characterization of the human SOX18 promoter, including determination of transcription start point (tsp) and identification of control elements involved in the regulation of SOX18 gene expression, with an emphasis on angiogenesis-related transcription factors. Analyses were performed in HeLa cells, representing a tumor cell line, and in EA.hy926 cells used as an endothelial model system. We have determined unique tsp of SOX18 gene, located 172 nucleotides upstream from ATG codon. Further, we have shown that SOX18 promoter region, -726 to -89 bp relative to tsp, contains positive cis-regulatory element(s) that stimulates SOX18 promoter activity, while region -89 to + 166 represents the minimal promoter. Within this region we have recognized the presence of essential element(s), positioned from -89 to +29, which harbors cluster of three putative early growth response 1 (EGR1) binding sites. By in vitro binding assays and functional analyses we have shown that these three putative binding sites are functionally relevant and sufficient for EGR1-induced SOX18 transcription. Mutations of these binding sites significantly impaired activity of the SOX18 promoter, particularly in EA.hy926 cells, indicating the importance of these regulatory elements for SOX18 promoter activity in endothelial setting. By data presented in this study, we have established SOX18 as a novel target gene regulated by EGR1 transcription factor, thus providing the first functional link between two transcription factors previously shown to be involved in the control of angiogenesis.


Subject(s)
Humans , Early Growth Response Protein 1/genetics , Electrophoretic Mobility Shift Assay , Endothelium/metabolism , Gene Expression Regulation , HeLa Cells , Mutagenesis, Site-Directed , Neovascularization, Physiologic/genetics , Promoter Regions, Genetic , Protein Binding/genetics , SOXF Transcription Factors/genetics , Transcription Initiation Site , Transcriptional Activation
3.
Journal of Veterinary Science ; : 133-144, 2008.
Article in English | WPRIM | ID: wpr-121050

ABSTRACT

Adhesion through microbial surface components that recognize adhesive matrix molecules is an essential step in infection for most pathogenic bacteria. In this study, we report that LigB interacts with fibronectin (Fn) through its variable region. A possible role for LigB in bacterial attachment to host cells during the course of infection is supported by the following observations: (i) binding of the variable region of LigB to Madin-Darby canine kidney (MDCK) cells in a dose-dependent manner reduces the adhesion of Leptospira, (ii) inhibition of leptospiral attachment to Fn by the variable region of LigB, and (iii) decrease in binding of the variable region of LigB to the MDCK cells in the presence of Fn. Furthermore, we found a significant reduction in binding of the variable region of LigB to Fn using small interfering RNA (siRNA). Finally, the isothermal titration calorimetric results confirmed the interaction between the variable region of LigB and Fn. This is the first report to demonstrate that LigB binds to MDCK cells. In addition, the reduction of Fn expression in the MDCK cells, by siRNA, reduced the binding of LigB. Taken together, the data from the present study showed that LigB is a Fn-binding protein of pathogenic Leptospira spp. and may play a pivotal role in Leptospira-host interaction during the initial stage of infection.


Subject(s)
Animals , Dogs , Antigens, Bacterial/genetics , Cell Line , Enzyme-Linked Immunosorbent Assay , Fibronectins/metabolism , Immunoglobulin Variable Region/genetics , Leptospira/genetics , Microscopy, Confocal , Protein Binding/genetics , Protein Structure, Tertiary , RNA, Small Interfering/genetics
4.
J Biosci ; 2007 Aug; 32(5): 827-39
Article in English | IMSEAR | ID: sea-111274

ABSTRACT

Over 50% of all human cancers involve p53 mutations,which occur mostly in the sequence-specific DNA-binding central domain (p53c), yielding little/non-detectable af?nity to the DNA consensus site.Despite our current understanding of protein-DNA recognition,the mechanism(s) underlying the loss in protein-DNA binding afnity/ specificity upon single-point mutation are not well understood. Our goal is to identify the common factors governing the DNA-binding loss of p53c upon substitution of Arg 273 to His or Cys,which are abundant in human tumours. By computing the free energies of wild-type and mutant p53c binding to DNA and decomposing them into contributions from individual residues, the DNA-binding loss upon charge/noncharge -conserving mutation of Arg 273 was attributed not only to the loss of DNA phosphate contacts, but also to longer-range structural changes caused by the loss of the Asp 281 salt-bridge. The results herein and in previous works suggest that Asp 281 plays a critical role in the sequence-specific DNA-binding function of p53c by (i)orienting Arg 273 and Arg 280 in an optimal position to interact with the phosphate and base groups of the consensus DNA, respectively, and (ii) helping to maintain the proper DNA-binding protein conformation.


Subject(s)
Amino Acid Substitution/genetics , Arginine/genetics , Binding Sites/genetics , Cysteine/genetics , DNA/genetics , Humans , Point Mutation , Protein Binding/genetics , Thermodynamics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL